Find us on Google+
« Return to The Shape of the Great Pyramid

Table of Contents for
The Shape of the Great Pyramid by Roger Herz-Fischler

Acknowledgements

Introduction

Part I. The Context

Chapter 1. Historical and Architectural Context

Chapter 2. External Dimensions and Construction

Surveyed Dimensions

Angle of Inclination of the Faces

Egyptian Units of Measurement

Building and Measuring Techniques

Chapter 3. Historiography

Early Writings on the Dimensions

Modern Historiographers

Part II. One Pyramid, Many Theories

Diagrams

Chapter 4. A Summary of Theories

Definitions of the Symbols—Observered Values

A Comparison of the Theories

Chapter 5. Seked Theory

The Mathematical Description of the Theory

Seked Problems in the Rhind Papyrus

Archaeological Evidence

Early Interpretations of the Rhind Papyrus

Petrie

Borchardt

Philosophical and Practical Considerations

Chapter 6. Arris = Side

The Mathematical Description of the Theory

Herodotus (vth century)

Greaves (1641)

Paucton (1781)

Jomard (1809)

Agnew (1838)

Fergusson (1849)

Becektt (1876)

Howards, Wells (1912)

Chapter 7. Side : Apothem = 5 : 4

The Mathematical Description of the Theory

Plutarch’s Isis and Osiris

Jomard (1809)

Perring (1842)

Ramée (1860)

Chapter 8. Side : Height = 8 : 5

The Mathematical Description of the Theory

Jomard (1809)

Agnew (1838)

Perring (1840?)

Röber (1855)

Ramée (1860)

Viollet-le-Duc (1863)

Garbett, (1866)

A.X., (1866)

Brunés (1967)

Chapter 9. Pi-theory

The Mathematical Description of the Theory

Egyptian Circle Calculations

Agnew (1838)

Vyse (1840)

Chantrell (1847)

Taylor (1859)

Herschel (1860)

Smyth (1864)

Petrie (1874)

Beckett (1876)

Proctor (1877)

Twentieth-Century Authors

Chapter 10. Heptagon Theory

The Mathematical Description of the Theory

Fergusson (1849)

Texier (1934)

Chapter 11. Kepler Triangle Theory

The Mathematical Description of the Theory

Kepler Triangle and Equal Area Theories

Kepler Triangle, Golden Number, Equal Area

Röber (1855)

Drach, Garbett (1866)

Jarolimek (1890)

Neikes (1907)

Chapter 12. Height = Golden Number

The Mathematical Description of the Theory

Röber (1855)

Zeising (1855)

Misinterpretations of Röber

Choisy (1899)

Chapter 13. Equal Area Theory

The Mathematical Description of the Theory

The Passage from Herodotus

Agnew (1838)

Taylor (1859)

Herschel (1860)

Thurnell (1866)

Garbett (1866)

Smyth (1874)

Hankel (1874)

Beckett and Friend (1876)

Proctor (1880)

Ballard (1882)

Petrie (1883)

Twentieth-Century Authors

Chapter 14. Slope of the Arris = 9/10

The Mathematical Description of the Theory

William Petrie (1867)

James and O’Farrell (1867)

Smyth (1874)

Beckett (1876), Bonwick (1877), Ballard (1882)

Flinders Petrie (1883)

Texier (1939)

Lauer (1944)

Chapter 15. Height : Arris = 2 : 3

The Mathematical Description of the Theory

Unknown (before 1883)

Chapter 16. Additional Theories

Part III. Conclusions

Chapter 17. Philosophical Considerations

Chapter 18. Sociology of the Theories—A Case Study: The Pi-theory

The Social and Intellectual Background in Victorian Britian

Relationship of the Pi-theory to Other Topics

A Profile of the Authors

Chapter 19. Conclusions

The Sociology of the Theories

What Was the Design Principle?

Appendices

Appendix 1. An Annotated Bibliography

Appendix 2. Tombal Superstructures: References and Dimensions

Appendix 3. Egyptian Measures

Appendix 4. Egyptian Mathematics

Appendix 5. Greek and Greek-Egyptian Measures


Notes

Bibliography/Notes